REDS: Estimating the Performance of Error Detection Strategies Based on Dirtiness Profiles

Mohammad Mahdavi
Technische Universität Berlin
mahdavilahijani@tu-berlin.de

Ziawasch Abedjan
Technische Universität Berlin
abedjan@tu-berlin.de

Motivation
- Error detection is the task of finding wrong values
 - E.g., the red values in the table
- There are different error detection strategies
 - A rule violation detector with Kingdom → Lord [1]
 - A pattern violation detector with not-null [2]
 - An outlier detector [3]
 - ...
- Not all the strategies are always accurate [4]

Research Question
- Given a dataset and a set of error detection strategies, how can we estimate the performance of strategies without involving the user to evaluate them?
 - How can we automatically represent the dirtiness of datasets?
 - How can we identify the dirtiness similarity of datasets?
 - How can we leverage the dirtiness similarity of datasets to estimate the performance of strategies on a new dataset?

REDS estimates the performance of error detection strategies without any user labels via representing datasets by their dirtiness profile.

The Workflow of REDS

Dirtiness Profile
- Content features
 - Represent data domain
 - E.g., top keywords
- Structure features
 - Represent data type distribution
 - E.g., the fraction of numerical data values
- Quality features
 - Represent error type distribution
 - E.g., the normalized output size of an outlier detection strategy

Experimental Overview
- 11 Datasets
 - Hospital
 - Flights
 - Newspapers
 - Beer
 - Salaries
 - Address
 - Movies
 - Restaurants
 - Soccer
 - Tax
- Baseline
 - Maximum Entropy-Based Approach [5]
- Evaluation Measure
 - Mean Squared Error
- 4 Experiments
 - Effectiveness
 - Features
 - Regression Model
 - Repository Size

Experimental Results
- Maximum Entropy-Based [5]
- Unsupervised REDS
- Full REDS

References

Source Code
Our prototype is available online: https://github.com/bigdama/reds

Acknowledgement
This project has been supported by the German Research Foundation (DFG) under grant agreement 387872445.